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Binary classification: {xi , yi}mi=1, xi ∈ Rd , yi ∈ {−1,+1}.
well studied, logistic regression, SVM, etc.

Multiclass classification: yi ∈ {A,B,C}
single variate output, decomposable

What if multiple interdependent output variables?

classifying independently: ignoring output structure
better solution: joint embedding φ(xi , yi ) + linear classifiers

Structured output learning (SOL) techniques:

conditional random fields, structured SVM, etc.
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Structured SVM optimisation problem

joint embedding into Rd using φ(xi , yi )
find projection w maximising the margin
`2 regularisation as in standard SVM

minw
1
2 ||w||

2 + C
∑m

i=1 ξi (1)

s.t. wTφ(xi , yi )−wTφ(xi , y) ≥ ∆(yi , y)− ξi , ∀y ∈ Y\yi ,∀i
ξi ≥ 0 ∀i
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Figure: An example of ball tracking and ball event detection results.
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Joint embedding defined implicitly:

< φ(xi , yi ), φ(xj , yj) > (2)

=

oi∑
s=2

oj∑
t=2

Jy s−1
i = y t−1

j KJy s
i = y t

j K + η

oi∑
s=1

oj∑
t=1

Jy s
i = y t

j KK (xi , xj)

Find the optimal w by solving Eq. (1)

Discriminative approach:

interested in P(Y |X ) rather than P(X ,Y )

Generative approach:

hidden Markov model (HMM), modelling P(X ,Y )
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Artificial court game with 4 types of events:

serve, bounce, hit, net

Initial probabilities: 0.80, 0.10, 0.05, 0.05

Transitional probabilities:
0 0.80 0 0.20 0
0 0.20 0.60 0 0.20
0 0.65 0.15 0.15 0.05
0 0 0 0 1.00


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Observation for 4 events:

exp. A: Gaussian densities; exp. B: uniform densities
10 dimensional vectors, same covariance, different means
parameter γ controlling separation

1000 training sequences, 1000 test sequences

Performance metrics: per token error and per label error

Compare generative HMM and discriminative SOL

in HMM Gaussian observation density assumed: valid in exp.
A while invalid in exp. B
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Figure: Left: token error. Right: label error. Normal observation density.
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Figure: Left: token error. Right: label error. Uniform observation density.
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Two real world tennis games

Australian Open 2003 women’s singles, 71 play shots
Australian Open 2008 women’s doubles, 163 play shots

Ball tracking and key event detection fully automatic

Observation features:

acceleration + velocity + position
acceleration + velocity

Leave-one-out evaluation

Compare generative HMM and discriminative SOL
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Table: Australian 2003 Singles

Per token error rate Per label error rate

HMM SOL HMM SOL

Without ball positions 0.1529 0.1449 0.6761 0.6338

With ball positions 0.1210 0.1051 0.6338 0.5211

Table: Australian 2008 Doubles

Per token error rate Per label error rate

HMM SOL HMM SOL

Without ball positions 0.2206 0.1832 0.8589 0.8098

With ball positions 0.1656 0.1531 0.8589 0.8160
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Event classification is a structured problem

output structure: sequence

Traditionally done with generative HMM

SOL vs. HMM: fewer assumptions, better classification
performance

Overall performance still low

other modalities as observation: audio, player action
learning their importance in MKL setting
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