Anomaly on player detection

Teo de Campos

CVSSP – Centre for Vision Speech and Signal Processing University of Surrey

ACASVA project meeting Queen Mary, University of London 27 June 2011

Anomaly Cases

Case	Confidence of	Confidence	Unconditional	Incongruence	Probability	Joint	Data	Domain	Domain anomaly type /
	noncontextual	of contextual	likelihood	of labelling	of Joint	likelihood	Quality	anomaly	Comment
	labelling of	labelling of	$p(x_i), \forall i$	components	labelling of	of mea-		'	
	components	components	1 (-//	i = 1,, k	components	surements			
	i = 1,, k	i = 1,, k			•	$p(x_1,, x_k)$			
a	High	k=1: no con-	High				Good	No	Single object (component) la-
	C	text							belling
b	Medium	k=1: no con-	Medium				Bad	No	Noisy measurement: Single ob-
		text							ject (component) labelling am-
									biguity
c	Any	k=1: no con-	Low				Good	Yes	CpntDomAn / Novelty object
		text							(component), model required
d	Medium	k=1: no con-	Medium				Good	Maybe	CpntDomAn / Model drift
		text							(observable over time): Nov-
									elty object (component) model
									or Adaptation required
е	All high	All high	All high	No	High	High	Good	No	Congruency between the weak
									and strong classifier output
f	All high	Some Low	All high	Some yes	Zero	Low	Good	Yes	CfgDomAn / Scene model not
									available (e.g. out of vocabu-
									lary word)
g	Some high,	Some low	Some low	Some yes	Low → zero	Low	Good	Yes	CpntDomAn / Unexpected
	some any								component: Component model
									correction results in congru-
	All any	A11	All low	C	1	T	Good	Yes	ency Cpnt&CfgDomAn / All
h	All any	All any	All low	Some yes	Low	Low	Good	ies	Cpnt&CfgDomAn / All components unexpected: Dif-
									ferent alphabet and vocabulary
									required
i	Medium	Medium	Medium	Some yes	Medium	Medium	Bad	No	Noisy measurements on one
,	Wichiall	Mediaili	Mediali	Some yes	Mediuili	Medium	Dau	110	or more primitives resulting in
									ambiguity
i	Medium	Medium	Medium	Some yes	Medium	Medium	Good	Maybe	Cpnt&CfgDomAn / Com-
,				Joine yes			Stod	1.111,00	ponent model drift (observable
									over time): New component
									and world model or adaptation
									required
								L	

How many people can be found in a game of tennis?

How many people in a game of tennis *doubles*?

Can we spot anomaly based on player detection?

Measurement functions

• χ^2 statistics

$$\chi^2(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{2} \sum_{d=1}^{D} \frac{[x_d - \hat{x}_d]^2}{x_d + \hat{x}_d}$$

Two-sample Kolmogorov-Smirnov test

$$KS(\mathbf{x}, \hat{\mathbf{x}}) = \sup_{d} |x_d - \hat{x}_d|$$

Mode difference

$$MD(\mathbf{x}, \hat{\mathbf{x}}) = \arg\max_{d}(x_d) - \arg\max_{d}(\hat{x}_d)$$

Anomalies detected on games of singles

Anomalies detected on games of doubles

Noise measurements

Video	mean \pm std	median
Australia2003	1.922 ± 0.093	1.9
Aus2003Mens	3.065 ± 2.328	2.1
Japan2009	1.623 ± 0.466	1.6
Australia2008	1.290 ± 0.996	0.8
US06WomenDouble	1.541 ± 1.942	0.9

$$noise = \frac{1}{D} \sum_{d}^{D} \sigma(\mathbf{m}_{d})$$

where \mathbf{m}_d is the array containing the value of all pixels taken into acount to compute the mosaic at the pixel position d.

Plan

- Wrap this up into a paper
- Use prior knowlege of player height to estimate bounding box scales
- Improve action classification using a sliding window and voting
- Work on player detection/tracking