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Image denoising: motivating example

 Images are inevitably corrupted by various degradations and
particularly by noise.
« Megapixels race: Pixels are getting smaller, and images even noisier

noise denoised image

Canon Powershot A590IS 1SO 800
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Imaging Sensors: Exposure-time/noise trade-off

Digital imaging sensors can have very different performance
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« Signal-dependent noise modeling and removal for digital imaging
sensors

 Local polynomial approximations (LPA-ICI)
« Advanced image processing techniques:

- shape-adaptive methods

- nonlocal transform-based methods

« Applications:
- denoising
- deblurring
- deblocking
- super-resolution/zooming
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e Load an image and corrupt with additive white Gaussian
noise (AWGN)

y = im2double(imread( rama %) % load noise-free image
sigma = 0.2*(max(y(:))-min(y(:))); % define sigma as 20% of range of y
n = sigma * randn(size(y)); % generate 20% noise

Z =Y + n; % add noise to obtain noisy image

figure(1);

imshow([y z]);

e z(x) =y(x)+on(x),x € Z?>and n(-) ~ N(0,1)

o The goal in image denoising is to estimate y from a single
realization of z. The statistics of on can be either known, or
have to be estimated (noise estimation).

-ﬁ- TAMPERE UNIVERSITY OF TECHNOLOGY E
Department of Signal Processing NOISE LE_5_§



e If noise samples are independent, then
var {Z["l Aiz(xi)} = ZL Asvar{z(x;)}

e Consider a linear smoothing filter implemented as the
convolution of z against a blur kernel g:

Ix)=(z®g)( dezzzx £)g(é&).
T'henvar{ﬂ(x}}—Zaezzvar{Z(x— )}9 (&) =
— ZZaezilQ — 2||9”2,

where | g||, is the {; norm of g.

Blur kernels satlsfy g > 0and ) ;.z g(&) =1, therefore
var{{J(x)} < o? (i.e. noise attenuation).
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e Any discrete uniform blur kernel g has N non-zero
samples all equal to 1/N.

e Then, convolving z with a uniform blur kernel gives
var{§(x)} =0 ¥ ¢ cz2 97(8) = 0> 31 N72 =0?/N.

This means that the bigger is the kernel, the stronger is the
noise attenuation.
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e Multiple noise realizations

N_realizations = 300;
Z=zeros(size(y,1),size(y,2),N_realizations);
for jj=1:N_realizations
n = sigma * randn(size(y)); % generate noise
Z =y + n; % add noise
ZC: s vxd1D=21 % collect in a 3D stack
end

e In real applications, we typically deal with only a single
noise realization. Here we consider many realizations as
an easy way to obtain population statistics from sample
estimators.

e Pointwise variance (computed along the 3™ dimension)

>> var_of_Z-mean((Z-repmat (mean(Z,3),[1 1 size(Z,3)1)).42,3);
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e Smoothing with uniform kernel of size h x h and
inspection of variance, bias, and MSE of the estimate {}:

for h=1:9;
clear Yhat;
g_h=ones(h)/h*2;
for jj=1:N_realizations
Yhat (z, sy g )=conv2(Z (2., 33).guh, i)y
end
var_of_Yhat=mean((Yhat-repmat (mean(Yhat,3),[1 1 size(Yhat,3)]1)).*2,3);
bias_of_Yhat=mean(Yhat-repmat(y,[1 1 N_realizations]),3);
MSE_of_Yhat{h}=bias_of_Yhat.*2+var_of_Yhat;
end

Note that var_of_Yhat is equal to sigma”2*sum(g_h(:)."2)
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Poisson distributions

Poisson distributions are discrete integer-valued distributions with non-negative

real-valued parameter (mean) 6 >0
g%
z~P(0) Pr[z:qe]:e—BE, (eN

w6 = E{do} =6
02(0) = var{z|6} =60 = u(6)

mean and variance coincide and are equal to the parameter 6

Matlab code: z = poissrnd(theta)

S’

p®) p (0
@ Wl ™

signal-to-noise ratio (SNR):

p

Q
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Poisson distributions :
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Normal approximation of Poisson

¢
z ~ P (0) means the probability of z Pr[z = (|0] = 8_9%, (eN
M n)”
z ~ N (u,0?) means the probability density of z is g ({|g, 0?) = e 202

PE) ,— N6

Matlab code: z = z + sqrt(theta).*randn(size(theta))
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Normal approximation of Poisson
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“p.d.f.” (top) and c.d.f. (bottom) for P (¢) and N (6,0), ¢ = 2,10, 20,40.
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Poissonian noise

Let y: X —»Y CRF original image (deterministic, possibly unknown)

x>0 scaling factor

z(@)x~Pxy(z), VzelX.

E{z(z)x} =xE{z(2)} =xy(z) = E{z(z)}=y(=),
var {z (2) x} = 2 var{z (@)} = xp(2) = varfz(z)}= L2,
This can be rewritten in the usual form as

z(:r:)zy(:z:)—l—ﬂ%ﬁg){(x), Vz e X,

where E{{(z)} =0 and var{{(z)} = 1.
The term 4/ y‘%‘lf(l‘) is the so-called Poissonian noise.
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Scaled Poisson observations
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Scaled Poisson observations
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Statistical analysis of raw data

A simple experiment

Take photos of a gray scale test ramp

= D[:_'\‘

=0
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Statistical analysis of raw data
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Statistical analysis of raw data

& BEnpie experanont A simple experiment

Cross-section
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Statistical analysis of raw data

A simple experiment A simple experiment A simple experiment
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Statistical analysis of raw data

TAKE MANY MORE SHOTS, AND THEN AVERAGE THEM ALL

TAKE MANY MORE SHOTS, AND THEN AVERAGE THEM ALL Scatterplot: average vs realization

pointwise
realization

pointwise average
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Statistical analysis of raw data

SUBTRACT THE AVERAGE OF ALL SHOTS FROM ANY OF THE SHOTS

=
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Statistical analysis of raw data

FOR EACH PIXEL, COMPUTE
SAMPLE MEAN AND SAMPLE STANDARD DEVIATION
W.R.T. THE VARIOUS SHOTS

T T T

%

H

NOISE IS STRONGER WHERE THE AVERAGE IMAGE IS BRIGHTER:
STANDARD-DEVIATION IS A FUNCTION OF MEAN

SIGNAL-DEPENDENT NOISE
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Statistical analysis of raw data

The analysis of experimental data

demonstrates that:

1. The model of noise is close to the
Poissonian one

2. Model parameters depend neither on the
color channel nor on the exposure time

T 50ms (1/20sec) A=0.0005
5 T T T T T T T T T

45+ -

4_

35+

3_

0 I I I I I I I I
0 0.05 01 0.15 0.2 0.25 0.3 0.35 04 0.45 05
Intensity
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Parametric sighal-dependent noise-modelling:

Poissonian-Gaussian with clipping
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Parametric signal-dependent noise-modelling: ~
automatic estimation from single-image raw-

data (http://www.cs.tut.fi/~foi/sensornoise.html)
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Practical modeling for raw data: idea

» Model photon-to-electron conversion using Poisson distributions (signal
dependent);

» Model the other noise sources as signal-independent and Gaussian (central-
limit theorem);

» Exploit normal approximation of Poisson distributions;

 The acquisition/dynamic range is limited: too dark or too bright signals are
clipped,;

» There can be a pedestal,

» Spatial dependencies can be ignored for normal operating conditions (go for
Independent noise).

Eventually, only two parameters are sufficient to describe the noise model
where the raw data is described as clipped signal-dependent observations.
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Variance stabilization

Variance-stabilization problem

Find a function f : Z — R such that the transformed variable f (z)
has constant standard deviation, say, equal to 1, std {f (2) |6} = 1.

such f is a variance-stabilizing transformation (VST)

f should be independent of 6

Benefits:

» the (conditional) standard deviation does not depend anymore on the distribution pa-
rameter;
» heteroskedastic z turns into a homoskedastic f (z).
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Variance stabilization

VSTs are often exploited for the removal of signal-dependent noise through the following
three-step procedure:

1. Noise variance is stabilized by applying a VST f to the data; this produces a signal in
which the noise can be treated as additive with unitary variance.

2. Noise is removed using a conventional denoising algorithm — denoted by ® — for additive
homoskedastic noise (e.g., additive white Gaussian noise).

3. An inverse transformation is applied to the denoised signal, obtaining the estimate of
the signal of interest.

Denoising algorithms attempt to estimate the expectation, thus,
D = ® (f (2)) can be treated as an approximation of E{f(z)|6}.
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Inversion for Poisson stabilized by Anscombe

Makitalo, Foi (TIP, 2011)

Let z be Poisson distributed data.
Applying the Anscombe transform yields f(z) =2y/z + %.
After filtering of f (z) we obtain D = ® (f(z)), which we treat as an approximation of

E{f(2)[6}-

Algebraic inverse: Za(D) = £ 1D = (3)
Asymptotically unbiased inverse: Iz(D) = (%)2 -1
|

yi — E{z | y}.

)
We have discrete Poisson probabilities Plz |m), 8

3 yfe?
BU(2) 191 = X SDPLe 1) = zz(\m- ).
The definition of Zs is 1mp11(:1t,_ but we can have a closed form approximation as

! 1 74 4l 5. /9 1
B f) = pHt \/;D‘l ~g+ %@D‘g 3

TAMPERE UNIVERSITY OF TECHNOLOGY
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Exact unbiased inverse: To: BLf (




Experiment: clipped noisy data

Original 1mage :y (x1, x2) = 0.7 sin (2r x1/512)+ 0.5
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Experiment: Noise Estimation

estimation and fitting a = 0.0038, b = 0.022 st.dev.-function .c
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Experiment: denoised estimate after variance
stabilization before declipping
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Experiment: declipped estimate
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Experiment: declipped estimate (crosssection)
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Real experiment: (Raw-data from Fujiflm FinePix

S9600, 1ISO 1600)
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Real experiment: Denoising before declipping
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Real experiment: Denoising after declipping
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1.4

Real experiment: Denoising after declipping
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LASIP

www.cs.tut.fi/~lasip/

* Local Approximation Signal and Image Processing
(LASIP) Project

LASIP project is dedicated to investigations in a wide class of
novel efficient adaptive signal processing techniques.
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LPA estimates, bias and variance, and asymptotic MSE

The observation model is z =y + 1, where y is the true signal and 7 is noise.
Let 1;, denote the LPA estimate and the LPA kernel corresponding to different
values of a scale parameter h:

Yh = z ® gh where g, = g (-/h)

Bias: b, . =vyl(x)—(y®q,)(x) (nzero-mean and independent)
Yh!l) ed N\ ] -I .Al}? ]\ ‘ d
fos 2y e Pal) 2 _— 2 TN 2 P f» 7, - 2 9 . 9 A
Variance: o7 .\ = (02 ® g7) (x) (if 02 = 0° then 0 =02 g5 )

The following asymptotic expressions for the bias, variance and MSE' of hold:
. La 2 _ . —b _ .212a . b
b, = ch®, o;, =dh™7, Ly (2) = R 4+ dh™°.
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LASIP: Intersection of Confidence Intervals (ICI) rule
Goldenshluger & Nemirovski, 1997

Y

h* h h i ]}3 h3 =ht h.;
The estimates yp(x) are calculated for a set H = {h; }'j-"_l of increasing scales.
The ICI rule vields a pointwise adaptive estimate 1, + (), where for every z
I'he ICI rule yield intwi lapti timate 7,4+ (x), where for I
an adaptive scale ht (z) € H is used; h' (z) =~ h*(z). The ICI rule is as
follows. Consider the intersection of confidence intervals Z; =(Y;_,D;. where
D; = [yn,(x)-Loy, ,9n,(x) + Loy, | and T' > 0 is a threshold parameter, and
let 17 be the largest of the indexes 7 for which I; is non-empty. L.+ + & and
. ) : J . J : 1

Liv. =2. Then. h" is defined as ht = h.+ and the adaptive estimate is 1, +(x).
] 1 : v Yht\
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Adaptive scales and adaptive-scale estimates obtained for different values of I'. The
adaptive scales are represented using a darker shade of gray for the smaller scales, black
being the smallest scale (which corresponds to a Dirac-delta estimate), and white being

the maximum scale (corresponding to a kernel whose support is a disc of radius 35 pixels).
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Anisotropy: motivation

In some cases the geometry of symmetric kernels is not sufficient to adapt to the image
structure. Goal: adapt to the image using approximations of starshaped supports.
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Anisotropic estimator based on directional

adaptive-scale: idea

NP

Piecewise constant approximation of 7, and its representation by adaptive-size sectors.

-a TAMPERE UNIVERSITY OF TECHNOLOGY 3
Department of Signal Processing Karen Egiazarian NOISE LE_E_?



Directional LPA

The window is characterized by a direction # and is denoted as wy.

The polynomials are expressed with respect to a f-rotated coordinate system:
M = {90 L (ug,ug) = Zznj Cf,jui’u%} ;
(u1,u2) = (v1 cos @ 4+ va sinf, v9 cos  — vy sin @) = Ugv.

Typically, wg is obtained by rotating a “basic” window w = wg through an angle 6,
wy = w (Ugv). When also a scale parameter h is exploited, the resulting estimates and
kernels are denoted as wy, g, g5.6, respectively.
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LASIP: HOW LPA-ICI WORKS

\" adaptive-scale \_ A
[\/directional window

D

Figure 1: Anisotropic local approximations achieved by combin-
ing a number of adaptive-scale directional windows. The examples
show some of these windows selected by the directional LPA-ICI
for the noisy Lena and Cameraman images.

g
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Anisotropic LPA-ICI:

Kernels used in practice

b h s AL s 2 s 3 25 é7 céll

The supports of the discrete kernels gy 1, h;j = 1,2,3,5,7,11. The origin pixel is
marked with a circle.
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Smaller scales are represented using a darker shade of gray.

TAMPERE UNIVERSITY OF TECHNOLOGY

Department of Signal Processing

£




Clockwise from top-left, the adaptive-scale estimates ¥+ (. 9,) (2 W,
g, = Ir 3 5Sm o 31 7w T
k 471 929 2241921
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The adaptive-scale directional estimates g5+ (2.0,),0, (x) are “fused” into the final anisotropic
estimate ¢ by the convex linear combination

g(x) = ZZ)\('Q?JQI) Qh*(;{:ﬁi),gi (.I‘)?
_ —2 —2
)\(33}93) = o) 1)91(:{:)/23 Jgh+(w,ej)!9j (CE)’ (15)

Qh.+(:e,9

where the inverse of the variance of the adaptive estimates is used as the weighting factor.

O 0 =#/4 «/2 3n/4 = bdu/4 3n/2 Trn/4 Y
ISNR (dB) | 4.13 3.57 4.08 356 4.11 344 4.07 3.55 S.07
SNR (dB) | 18.52 17.96 18.47 17.95 18.50 17.83 18.46 17.95 || 22.46
MAE (fl) 10.67 11.55 10.80 11.59 10.69 11.70 10.82 11.58 6.44
RMSE (fg) 15.90 16.95 16.00 16.98 15.93 17.21 16.01 16.98 || 10.10
MAX (£~) | 1316 114.7 1242 117.0 1126 1425 1144 1259 85.3

Criteria values for the denoising of the Cameraman image using 8 directional adaptive
estimates. The fused estimate is much better than each of the directional ones.
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Sliding DCT denoising

K. Egiazarian, J. Astola, M. Helsingius, and P.
Kuosmanen (1999) “Adaptive denoising and
lossy compression of images in transform
domain”, J. Electronic Imaging
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Shape-adaptive DCT image filtering

By demanding the local fit of a polynomial model, we are able to avoid
the presence of singularities or discontinuities within the transform support. In this
way, we ensure that data are represented sparsely in the transform domain,
significantly improving the effectiveness of shrinkage (e.g., thresholding).

noisy image and noisy data after hard-thresholding
adaptive-shape extracted from in SA-DCT domain
neighborhood the neighborhood
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Shape-adaptation: use directional LPA-ICI

\ daptivcsca e
LN\l directional window

? .
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Shape-adaptive DCT image filtering

Pointwise SA-DCT: anisotropic neighborhoods
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Shape-adaptive DCT image filtering

*Direct generalization of the classical block-DCT (B-DCT);
*On rectangular domains (e.g., squares) the SA-DCT and B-DCT coincide;

sComparable computational complexity as the separable B-DCT (fast
algorithms);

*SA-DCT is part of the MPEG-4 standard,;
Efficient (low-power) hardware implementations available.

Before our work on SA-DCT filtering, the SA-DCT had been used
only for image and video compression.
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Pointwise SA-DCT: denoising results

A fragment of Cameraman: noisy observation (o0=25, PSNR=20.14dB), BLS-
GSM estimate (Portilla et al.) (PSNR=28.35dB), and the proposed Pointwise
SA-DCT estimate (PSNR=29.11dB).
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Pointwise SA-DCT: deblocking results

JPEG coded Cameraman with 2 different quality levels and the results of
post-filtering using SA-DCT

|I. | ; "
NOISELESS
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Pointwise SA-DCT: deblurring results

Images blurred & noisy are deblurred & denoised by SA-DCT filter.

e s | 1
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Pointwise SA-DCT: extension to color, motivation

Luminance-chrominance decompositions: structural correlation

color transformation

[ L 1 17
3 3 3
. =1
Af);}p =1 V6 0 V6
1 V2 1
3 32
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Pointwise SA-DCT: structural contraint in

luminance-chrominance space

Use for all three channels the adaptive neighborhoods defined by the anisotropic
LPA-ICI for the luminance channel.

-e TAMPERE UNIVERSITY OF TECHNOLOGY T
Department of Signal Processing NOISE LE IMAGING



Pointwise SA-DCT: deblocking results

Hoom
-—
]
.\H.r."'}{ &
JPEG-compressed Pointwise SA-DCT deblocking
(Q=10, 0.25bpp, PSNR=26.87dB) (PSNR=28.30dB)

$ TAMPERE UNIVERSITY OF TECHNOLOGY B
Department of Signal Processing NOISE LE_5§



Pointwise SA-DCT: deblocking results

!

|
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Pointwise SA-DCT: denoising results

Fragments of the noisy F-16 (6=30, PSNR=18.59dB), of ProbShrink-MB
(Pizurica et al.) estimate (PSNR=30.50dB), and of Pointwise SA-DCT
estimate (PSNR=31.59dB).
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Block-Matching and 3D filtering (BM3D)

denoising algorithm

- Generalizes NL-means and overcomplete transform methods
e Current state-of-the-art denoising method

K. Dabov, A. Fol, V. Katkovnik, and K. Egiazarian, “Image
denoising with block-matching and 3D filtering”, Proc. SPIE
Electronic Imaging 2006, Image Process.: Algorithms and Systems
V, no. 6064A-30, San Jose (CA), USA, Jan. 2006.

---, “Image denoising by sparse 3D transform-domain collaborative
filtering”, IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-
2095, Aug. 2007.
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Block-matching and grouping

Groups are characterized by both:

e intra-block correlation between the pixels of each grouped block (natural
Images);

o inter -block correlation between the corresponding pixels of different blocks
(grouped block are similar);
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BM3D: Collaborative filtering

 Each grouped block collaborates for the filtering of all others, and vice versa.
* Provides individual estimates for all grouped blocks (not necessarily equal).
* Realized as shrinkage in a 3-D transform domain.

Noisy Step 1 _»Basic estimate Step 2
image {—7 — 1 [ l .
B— 3 P . Final
5 Block-wise estimates = Aggregation == Block-wise estimates = Aggregation =» Wiener
t N t y estimate
Inverse 3D transform : Inverse 3D transform !
. Grouping by ) L . Grouping by t o
blOCk'mE:LtChmg Hard-thresholding - - ----- - bloc};?%f{}}: "8 Wiener filtering ------ —h—'
v 1 Weight g ﬁ t t Weight
e g = 3D transform : g_» 3D transform
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BM3D with Shape-Adaptive PCA (BM3D-

SAPCA)

Main ingredients:

 Local Polynomial Approximation - Intersection of Confidence Intervals (LPA-
IC1) to adaptively select support for 2-D transform;

» Block-Matching to enable non-locality;

» Shape-Adaptive PCA (SA-PCA);

» Shape-Adaptive DCT low-complexity 2-D transform on arbitrarily-shaped
domains (when SA-PCA is not feasible).

K. Dabov, A. Fol, V. Katkovnik, and K. Egiazarian, .BM3D Image Denoising
with Shape-Adaptive Principal Component Analysis., Proc. Workshop on Signal
Processing with Adaptive Sparse Structured Representations (SPARS.09), Saint-
Malo, France, April 2009.

-a TAMPERE UNIVERSITY OF TECHNOLOGY 3
Department of Signal Processing NOISE LE_E_?



BM3D-SAPCA

Input noisy image

Y
Compute
shape-
. . Apply adaptive
shape PCA
Group similar blocks 3-D transform
'
| Shrinkage
Obtain shape G v
using LPA-ICI Inverse 3-D transform

=

Aggregation
v

Denoised image

-a TAMPERE UNIVERSITY OF TECHNOLOGY 3
Department of Signal Processing NOISE LE_E_?



£

Difference in PSNR [dB]

TAMPERE

[
o
L

]
| —
T

1
[—
N

1
~J

I
(]
n

Comparison of BM3D-SAPCA with other

Noise standard deviation

UNIVERSITY OF TECHNOLOGY

Department of Signal Processing

filters
e 'ﬁﬁp ' qj:w ! »\'“L
c Al SR A |
E—— e— S
+___ - —
DL
L
Tk
el AN
s )
1 1 1 __;g#:
15 20 25 35

——BM3D-SAPCA (proposed)
SA-BM3D (Dabov2008)

—+—BM3D (Dabov2007)
MS-K-SVD (Mairal2008)

- SA-DCT (Fo12007)

—+—K-SVD (Aharon2006)

-~ OAGSMNC (Hammond2008)
FoE (Roth2005)

——TLS (Hirakawa2006)
SAFIR (Kervrann2008)

——BLS-GSM (Portilla2004)

-~ LPA-ICI (Katkovnik2004)

——NL-means (Buades2005)



Comparison of BM3D-SAPCA with other

filters
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Comparison of BM3D-SAPCA with other
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Comparison of BM3D-SAPCA with other
filters (PSNR, SSIM)

Original N0|sy, c= 35 BM3D (27.82, 0.8207)

K%

K%

P. SADCT (27.51, 0.8143) SA-BM3D (28.02, 0.8228) BM3D-SAPCA (28.16, 0.8269)
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Interpolation for Bayer Pattern

Color Filter Array

Original scene

| } ' } ' } Observation

Color Interpolation
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Competitiveness with state-of-the-art

techniques

The proposed CFAI technique adapts to spatial properties of an image
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Conventional Approach for Noiseless Data
(Hamilton-Adams)
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Proposed Approach for Noiseless Data
(Spatially-Adaptive LPA-ICI)
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Compressed Sensing Image Reconstruction via

Recursive BM3D

Eqgiazarian, K., A. Foi, and V. Katkovnik, “Compressed Sensing Image Reconstruction via
Recursive Spatially Adaptive Filtering, ICIP 2007

Simulation of Radon reconstruction from sparse projections
(approximating Radon projections as radial lines in FFT domain:
Sparse projections: 11 radial lines)
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Compressed Sensing Image Reconstruction

via Recursive BM3D

Egiazarian, K., A. Foi, and V. Katkovnik, “Compressed Sensing Image
Reconstruction via Recursive Spatially Adaptive Filtering, ICIP 2007

Simulation of Radon reconstruction from sparse projections
(approximating Radon projections as Limited-angle in FFT
domain)
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BM3D for upsampling and super-resolution

Image upsampling or zooming, can be de.ned as the process of resampling a
single low-resolution (LR) image on a high-resolution grid.

The process of combining a sequence of undersampled and degraded low-
resolution images in order to produce a single high-resolution image is commonly
referred to as a Super-resolution (SR) reconstruction.

Modern SR methods (e.g., Protter et al. 2008, Ebrahimi and Vrscay 2008) are
based on the nonlocal means (NLM) filtering paradigm (Buades-Coll-Morel,

2005).

* No explicit registration: one-to-one pixel mapping between frames is replaced by
a one-to-many mapping.

The BM3D and V-BM3D algorithms share with the NLM the idea of exploiting
nonlocal similarity between blocks. However, in (V-)BM3D a more powerful
transform-domain modeling is used.
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BM3D based superresolution

Multistage iterative reconstruction
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Image upsampling x 4
(pixel replication)




Image upsampling x 4 in wavelet domain
(Danielyan et al. EUSIPCO 2008)

f
$ EEEEEEEEEEEEEEEEEEEEEEEEEEE GY =
Department of Signal Processing NOISELE Sﬁm



Video superresolution
comparison with (Protter et. al.)

Nearest neighbor Ground truth Protter et. al. Proposed

1. M. Protter, M. Elad, H. Takeda, and P. Milanfar, .Generalizing the Non-Local-Means to
Super-Resolution Reconstruction., IEEE Trans. Image Process., 2008.

2. A. Danielyan, A. Foi, V. Katkovnik, and K. Egiazarian, .Image upsampling via spatially

adaptive block-matching filtering, EUSIPC0O2008, Lausanne, Switzerland, Aug. 2008.
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Examples: Video denoising using V-BM3D
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Examples: Video denoising using V-BM3D
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Examples: Video denoising using V-BM3D
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Conclusions

Our algorithms have been licensed to major digital camera
manufacturers and are already in use by various research
Institutes for processing and enhancing their images.

N

S _,--F"f
Tomographic reconstruction of mouse embryo with BM3D filtering of axial slices
(Harvard Medical School, Boston MA, 2010)
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Conclusions

despite the phenomenal recent progress
in the quality of denoising algorithms, some room for improve-
ment still remains for a wide class of general images, and at certain

signal-to-noise levels. Therefore, image denoising is not dead—yet.
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Is Denoising Dead?

Priyam Chatterjee, Student Member, IEEE, and Peyman Milanfar, Fellow, IEEE

Abstract—Image denoising has been a well studied problem in
the field of image processing. Yet researchers continue to focus at-
tention on it to better the current state-of-the-art. Recently pro-
posed methods take different approaches to the problem and yet
their denoising performances are comparable. A pertinent ques-
tion then to ask is whether there is a theoretical limit to denoising
performance and, more importantly, are we there yet? As camera
manufacturers continue to pack increasing numbers of pixels per
unit area, an increase in noise sensitivity manifests itself in the form
of a noisier image. We study the performance bounds for the image
denoising problem. Our work in this paper estimates a lower bound
on the mean squared error of the denoised result and compares the
performance of current state-of-the-art denoising methods with
this bound. We show that despite the phenomenal recent progress
in the quality of denoising algorithms, some room for improve-
ment still remains for a wide class of general images, and at certain
signal-to-noise levels. Therefore, image denoising is not dead—yet.

Index Terms—Bayesian Cramér-Rao lower bound (CRLB),
bias, bootstrapping, image denoising, mean squared error.
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erature on such performance limits exists for some of the more
complex image processing problems such as image registration
[71, [8] and super-resolution [9]-[12]. Performance limits to
object or feature recovery in images in the presence of point-
wise degradation has been studied by Treibitz ef al. [13]. In
their work, the authors study the effects of noise among other
degradations and formulate expressions for the optimal filtering
parameters that define the resolution limits to recovering any
given feature in the image. While their study is practical, it
does not define statistical performance limits to denoising
general images. In [14], Voloshynovskiy et al. briefly analyze
the performance of MAP estimators for the denoising problem.
However, our bounds are developed in a much more general
setting and, to the best of our knowledge, no comparable study
currently exists for the problem of denoising. The present
study will enable us to understand how well the state-of-the-art
denoising algorithms perform as compared to these limits.
From a practical perspective, it will also lead to understanding
the fundamental limits of increasing the number of sensors in
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